1,074 research outputs found

    Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold

    Full text link
    We perform a detailed analysis of the recollision-excitation-tunneling (RESI) mechanism in laser-induced nonsequential double ionization (NSDI), in which the first electron, upon return, promotes a second electron to an excited state, from which it subsequently tunnels, based on the strong-field approximation. We show that the shapes of the electron momentum distributions carry information about the bound-state with which the first electron collides, the bound state to which the second electron is excited, and the type of electron-electron interaction. Furthermore, one may define a driving-field intensity threshold for the RESI physical mechanism. At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the second electron. We compute the distributions for helium and argon in the threshold and above-threshold intensity regime. In the latter case, we relate our findings to existing experiments. The electron-momentum distributions encountered are symmetric with respect to all quadrants of the plane spanned by the momentum components parallel to the laser-field polarization, instead of concentrating on only the second and fourth quadrants.Comment: 14 pages, 7 figure

    Influence of peptidylarginine deiminase type 4 genotype and shared epitope on clinical characteristics and autoantibody profile of rheumatoid arthritis.

    Get PDF
    Background: Recent evidence suggests that distinction of subsets of rheumatoid arthritis (RA) depending on anticyclic citrullinated peptide antibody (anti-CCP) status may be helpful in distinguishing distinct aetiopathologies and in predicting the course of disease. HLA-DRB1 shared epitope (SE) and peptidylarginine deiminase type 4 (PADI4) genotype, both of which have been implicated in anti-CCP generation, are assumed to be associated with RA. Objectives: To elucidate whether PADI4 affects the clinical characteristics of RA, and whether it would modulate the effect of anti-CCPs on clinical course. The combined effect of SE and PADI4 on autoantibody profile was also analysed. Methods: 373 patients with RA were studied. SE, padi4_94C.T, rheumatoid factor, anti-CCPs and antinuclear antibodies (ANAs) were determined. Disease severity was characterised by cumulative therapy intensity classified into ordinal categories (CTI-1 to CTI-3) and by Steinbrocker score. Results: CTI was significantly associated with disease duration, erosive disease, disease activity score (DAS) 28 and anti-CCPs. The association of anti-CCPs with CTI was considerably influenced by padi4_94C.T genotype (C/C: ORadj=0.93, padj=0.92; C/T: ORadj=2.92, padj=0.093; T/T: ORadj=15.3, padj=0.002). Carriage of padi4_94T exhibited a significant trend towards higher Steinbrocker scores in univariate and multivariate analyses. An association of padi4_94C.T with ANAs was observed, with noteworthy differences depending on SE status (SE2: ORadj=6.20, padj,0.04; SE+: ORadj=0.36, padj=0.02) and significant heterogeneity between the two SE strata (p=0.006). Conclusions: PADI4 genotype in combination with anti- CCPs and SE modulates clinical and serological characteristics of RA

    Laser-induced nonsequential double ionization: kinematic constraints for the recollision-excitation-tunneling mechanism

    Full text link
    We investigate the physical processes in which an electron, upon return to its parent ion, promotes a second electron to an excited state, from which it subsequently tunnels. Employing the strong-field approximation and saddle-point methods, we perform a detailed analysis of the dynamics of the two electrons, in terms of quantum orbits, and delimit constraints for their momentum components parallel to the laser-field polarization. The kinetic energy of the first electron, upon return, exhibits a cutoff slightly lower than 10Up10U_p, where UpU_p is the ponderomotive energy, as in rescattered above-threshold ionization (ATI). The second electron leaves the excited state in a direct ATI-like process, with the maximal energy of 2Up2U_p. We also compute electron-momentum distributions, whose maxima agree with our estimates and with other methods.Comment: 13 pages, 4 figure

    Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: the role of alignment and orbital symmetry

    Full text link
    We address the influence of the orbital symmetry and of the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to the electron emission at spatially separated centers. The interference patterns survive the integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron momentum distributions.Comment: 12 pages, 7 figures; some discussions have been extended and some figures slightly modifie

    Photon Momentum Transfer in Single-Photon Double Ionization of Helium

    No full text
    We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization

    Multiorbital tunneling ionization of the CO molecule

    Full text link
    We coincidently measure the molecular frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.Comment: This paper has been accepted for publication by Physical Review Letter
    • …
    corecore